TCG Plugin in Practice:
A Case of Microarchitecture Research

Akihiko Odaki [DAYNIX]

akihiko.odaki@daynix.com Daynix Computing Ltd.

odaki@rsg.ci.i.u-tokyo.ac.jp The University of Tokyo C’ UTOl(YO

mailto:akihiko.odaki@daynix.com
mailto:odaki@rsg.ci.i.u-tokyo.ac.jp
https://www.u-tokyo.ac.jp/
https://daynix.com/

Conventional TCG use cases

TCG: The CPU emulation engine of QEMU
Examples of conventional TCG use cases:

e Cross-development
(e.g., debugging Windows Arm64 on x86)
e Retro/hobby-computing (e.g., Amiga)

Common goal:

Emulate fixed hardware design fast
for software

U Aemisaa B eens 4.3 il b, ANCE IVCARCER 133985 TART AR Shnrbution 383

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-qemu-kernel-mode-debugging-using-exdi
http://zero.eik.bme.hu/~balaton/qemu/amiga/

TCG for parch research

Microarchitecture (parch) research:

Optimizing designs of microprocessors (= parch)
Our goal:

Simulate various CPU designs and evaluate their performance
ldea:

1. Generate software execution traces with a TCG plugin
2. Feedthem to simulators modeling hardware designs

Why parch?

Why research parch?
To exploit more parallelism
Assumption: Moore’s Law

Transistors gets smaller
= #transistors doubles for every 2 years

Slowing down a bit,
but has not stopped yet

Moore's law: The number of transistors per microprocessor

Moore's law is the observation that the number of transistors in an integrated circuit doubles about every two
years, thanks to improvements in production. It was first described by Gordon E. Moore, the co-founder of Intel, in
1965.

10 billion

1 billion
100 million
10 million
1 million
100,000

10,000

[| ' [|
1971 1980 1990 2000 2010 2021

Data source: Karl Rupp, Microprocessor Trend Data (2022) OurWorldInData.org/technological-change | CC BY

https://ourworldindata.org/grapher/transistors-per-microprocessor

End of Dennard scaling

Old good days (Y2006): Dennard scaling

1. Transistors gets smaller (Moore’s law)

2. The threshold current decreases

3. Raise clock to exploit the extra power budget
=+ everything gets 40% faster
for each technology generation

No longer true: transistors too small result in
excessive current leakage

e Extra power consumption
e Causes subthreshold condition,
preventing lowering the threshold current

10000

1000

100

Ciock Frequency (MHz)

0
1970

Adi Fuchs, 2019.

1980

1990

Year

2000

2010

2020

https://www.proquest.com/dissertations-theses/overcoming-limitations-accelerator-centric/docview/2303896029/se-2

Challenge of Amdahl’s law

Reminder: Moore’s Law is still alive; the
number of transistors is continuously
increasing.

Utilize extra transistors with Parallelism
Challenge: Amdahl’s law

Small part of execution that cannot be
parallelized bottlenecks the overall
performance.

20

16

14

10

Speedup

Amdahl's Law
_________________________ ;:;::::_
o~
// Parallel portion
/ 50%
S| || e 75%
/ —— 90%
/ —— 95%
|_A
/
: _7/__ |_Jlwss
A | g
7 4 P
7 /./
/7
/_/
- ~ < © © @ < w0 o~ © @«
"8 8RN EEEEE
Number of processors

Daniels220 at English Wikipedia, 2008. CC-BY-SA 3.0 Unported

https://commons.wikimedia.org/wiki/File:AmdahlsLaw.svg

Fighting with Amdahl’s law

Software Approaches:

e Multi-threading
e Vectorization

Hardware Approaches:

e Multi-core/SMT (a.k.a. hyper-threading)
e SIMD units

e Qut-of-order execution
o Instruction-level parallelization

Fight with Amdahl’s law
both in software and hardware

Present requirements/

Optimize for

Software

Maximize
Parallelism

Hardware

Provide features/
Optimize for

Challenge in parch Research

pnarch is complex.

Naive;
Execute instructions
top to bottom

Dump of assembler code for function main:
0x0000aaaaaaab02c0 < +0>: paciasp
sub

0x0000aaaaaaab02cd < +4>: sp, sp, #0xd0

0x0000aaaaaaab02c8 < +8>: stp %29, x30, [sp, #144]
0x0000aaaaaaab02cc < +12>: add x29, sp, #0x90
0x0000aaaaaaab02d0 < +16>: stp x19, x20, [sp, #160]
=> 0x0000aaaaaaab02d4 < +20>: adrp x19, Oxaaaaaaadf000
0x0000aaaaaaab02d8 < +24>: mov x20, x1
0x0000aaaaaaab02dc < +28>: ldr x3, [x19, #4064]

Educated:

Superscalar pipeline

IF [1D [EX MEM
IF | ID | EX MEM
| IF | D | EX wB
. IF | 1D | EX wB
- IF | 1D MEM| WB
IF | 1D MEM| WB
IF EX |MEM| WB
IF EX |MEM| WB
ID | EX |[MEM| WB
ID | EX |[MEM| WB

Reality:
Speculate everywhere
Parallelize everywhere

Load Store

Level 2 Cache N
Request

Response
648

8ul

Prefetch

Ginsts | [N
I Queue

Arm Neoverse V2 (Hot Chips 2023)

https://commons.wikimedia.org/wiki/File:Superscalarpipeline.svg
https://hc2023.hotchips.org/

Simulator in rescue

e A simulator estimates execution time and optionally power/area
e A researcher can omit details they don’t care about from the simulator

® e.g., floating-point arithmetics
o Dark magic most people don’t understand
o Simulator: just add some constant time latency

Trace-based simulation

Problems with simulation:

e Omitting details result in a non-functional system
e Simulating whole program execution takes too long (months)

Solution: generate execution traces with a functional emulator

e Traces characterize software
e A hardware simulator follows traces and sums up latency

e Only generate traces of regions of interest (ROIs)
o SimPoint automatically finds ROls

10

https://cseweb.ucsd.edu/~calder/simpoint/

Generating traces: conventional approaches

e Static instrumentation by compiler (LLVM)
o Affects instruction stream
Not applicable for parch research
e Dynamic instrumentation
o Intel Pin
o x86 is terrible for implementers
o Hard to extend the instruction set

e Reference interpreters

o Slow

o Architecture-specific

o Inflexible

o Limited userspace support

o Limited/complicated debugger setup

Generating traces with QEMU/TCG

TCG is fast

TCG supports various architectures
o RISC-V
o Even vector extension

TCG has great userspace emulation
QEMU works with GDB

TCG plugins can generate

various information

QEMU

12

Information simulators need

States included in traces:

e PC (program counter)

® Registers
o | and Alex Bennée developed plugin APIs to read reqisters (available since 9.0)

e Memory
o Only accessed data are available to plugins

Points to generate traces:

1. The beginning of the execution
o To omit program loading

2. After system calls
o To omit system call implementation

3. Each instruction
o To omit every computation

13

https://gitlab.com/qemu-project/qemu/-/commit/8df5e27cf71c727a3e1bc9172819ec69eca32ff4

Case study: Sniper

e Settings:
o Sniper simulator

o RISC-V Linux userspace on x86 sSh | pe r
o Benchmarks
m SPEC CPU 2017
m GAP Benchmark Suite
A graph benchmark suite

®

e Intel Pin
o The default tracer
o Incompatible with RISC-V

e Spike, the reference emulator of RISC-V °
o Too slow to run GAP benchmark suite = ®
@ o @
@ @

14

https://snipersim.org/w/The_Sniper_Multi-Core_Simulator
https://riscv.org/
https://www.spec.org/cpu2017/
http://gap.cs.berkeley.edu/benchmark.html

Case study: Sniper

Used two TCG plugins:

e Basic block vector generator for SimPoint (1ibbbv. so)
o Uses conditional callbacks (available since 9.1) for fast execution
o Upstreaming: [PATCH v3] contrib/plugins: Add a plugin to generate basic block vectors
(co-developed with Yotaro Nada)
e Sniper frontend for generating traces (1ibgemu-frontend. so)
o Traces PC and registers for each instruction
o Infers memory from registers

Benchmark -

= libgemu-frontend.so
ESPEC d — Sift —» >>I —» Metrics

o) GAP/ ¥ libbbv.so Basic : ' E M U g
~ —» block — SimPoint —p Simulation v

d E M U vectors Points

15

https://gitlab.com/qemu-project/qemu/-/commit/7de77d37880d7267a491cb32a1b2232017d1e545
https://patchew.org/QEMU/20240816-bb-v3-1-b9aa4a5c75c5@daynix.com/
https://mermaid.live/edit#pako:eNq1VE1v1DAQ_SuRD2hX2sSIG6FEolBxYdHCigvJqrIdxzEbf2A7iUrV_17b-UBFS8WFHKJ5nufneZOJ7wFRNQU5aDo1khYZl3z6WsnEP5hK0gpkzuXmhcRWv_nb-3ohPk-74oIlqHNvK3A83LyvQGIN8aB1TtscwnEcM6spyZRhkAvEqIWdYsrCQA_RZzTcHfeZlqwCxSr38d0hKi06lijnMEWCmkxSt0gxpNMgkrbK8F-ZHVixPSVpWiQdxxgPmVWT7xWWz_tZef9o-8vN_tuTQhl3HcIZUQL-pKJPtVE_KHERwBQaNMLhdfYyewU1STH3jQiZ22AilJ_AYqrfV1FurpHl5AqbAneKnEMweC1l7Pb0x-dcPMczG6Oko7Je3XuxSDhycVBcuml1QTFludAB2Cm3wnLjaX2HHFcyFBB32N9NvnzghUR5Ye3_t9Hyxi2OGhfMNG4u3kquqZmTMS7Xeo4RP53AuOT7Ekd5XCZw5Gd-O-XCDM_HCuoMJ3MvZ1Bu9lOwPYEd8IMsEK_9T3ofWBVwLRW0ArkPMbI-quSD56HeqeOdJCB3pqc7YFTPWpA3qLMe9bpGjn7giBkkFgqtuZ-R_XQFxJtgBzSS35US88aHRweIbYY

Case study: Sniper

Results:

e Succeeded in running GAP benchmark suite until end

e Passed 100% SPEC CPU 2017 validations with a few fixes
upstreamed with 8.1.0
[PATCH v2 0/6] linux-user: brk/mmap fixes

Simulator: next e

500 prtench 10

500.perlbench_r-0
500 perlbench_r-1
500.peribench; [cpilnstructionCacheL2
02.9
502.gcc. [cpilnstructionCachedram
502.gec_
502.gcc_r-

[cpiBranchPredictor
502.gec. [coiRsFull

503.bwaves ¢

503 bwave [cpipatacachel 1

503 bwav

503 bwaves, [cpipatacachel2

[cpipataCachedram

W criBase

507.cactuBSSN.

510 parest

511.povray,
519.1bm

& 520.0mnetpp_r-

3 521w

Benchmark

S
sz

s523.xalanchmk
526.blender
Femtoseconds 527.camd.

Ratio

https://patchew.org/QEMU/20230802071754.14876-1-akihiko.odaki@daynix.com/

Open problem: parch speculation

e Speculative execution

o Triggered by branch prediction
o Allows early execution of instructions following branches

o Sometimes executes wrong instructions

e Prefetcher
o Guess the region of memory the processor will access soon
o Fills caches early
o e.g., Indirect memory prefetcher
m A modern, complex prefetcher
m De-references pointers in an array (i.e., requires memory content)

m Presentin Apple M1+

17

narch speculation matters

Not present in traces
Traces do not contain parch details
Enables side/covert-channel attacks

e Speculative execution: Spectre
e Indirect memory prefetcher: GoFetch

Affects performance

e Prefetchers significantly improve
performance

e Wrong instruction execution after
mispredicted branches often fills caches
(behaves like prefetcher)

e Affects SMT

18

https://spectreattack.com/
https://gofetch.fail/
https://spectreattack.com/
https://gofetch.fail/

Simulating indirect memory prefetcher

Requires controlled memory read
e Needs to read memory not accessed in traces
Currently TCG plugins can only read registers and record accessed memory
e Dumping all memory may result in a huge file

GAP benchmark suite may consume 30 GB of memory

19

Simulating speculative execution

PC must be controllable
e Set PC to execute the wrong path
Needs checkpoint/restore

e Checkpoint before starting speculative execution
e Restore after the wrong speculative execution
e Also necessary to capture the region of interest (ROI)

20

Checkpoint/restore for simulation

e Normal checkpoint/restore

o Requires huge amount of storage

o Requires full-system emulation/virtualization

o Slow
e Checkpoint/restore for speculative execution

o Happens very frequently

o No need to run system calls during speculative execution

o The interval between checkpoint and restore is small (includes < 200 memory access insts.)
e Checkpoint/restore for the ROls

© Multiple ROIs
Needs to minimize storage usage

21

ldea: QEMU as a library

e parch simulation poses unique requirements
e Let the simulator handle its own requirements
e libgemu: Removed in 2011, leaked too much internal details

/* install exception handler for CPU emulator */

{

struct sigaction act;

sigfillset (&act.sa_mask);
act.sa_flags = SA_SIGINFO;
/7 act.sa_flags |= SA_ONSTACK;

act.sa_sigaction = host_segv_handler;
sigaction (SIGSEGV, &act, NULL) ;
sigaction (SIGBUS, &act, NULL);

}

// cpu_set_log(CPU_LOG_TB_IN_ASM | CPU_LOG TB OUT _ASM | CPU_LOG_EXEC);
env = cpu_init ("gemu32") ;

cpu_x86_set cpl(env, 3);

env->cr[0] = CRO_PG MASK | CRO WP MASK | CRO_PE MASK;

/* NOTE: hflags duplicates some of the virtual CPU state */

env->hflags |= HF_PE_MASK | VM _MASK;

/* flags setup : we activate the IRQs by default as in user 22
mode. We also activate the VM86 flag to run DOS code */

https://gitlab.com/qemu-project/qemu/-/commit/e4aeadcb5685cdb421275025c5b22f530f830105

ldea: QEMU as a library

e Unicorn: out-of-tree QEMU fork

err = uc_open (UC_ARCH _X86, UC_MODE_32, &uc);

if (err) {
printf("Failed on uc_open() with error returned: su\n", err);
return;

// map 2MB memory for this emulation
uc_mem_map (uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);

// write machine code to be emulated to memory

if (uc_mem write(uc, ADDRESS, X86_CODE32, sizeof (X86_CODE32) - 1)) {
printf ("Failed to write emulation code to memory, quit!\n");
return;

// initialize machine registers
uc_reg_write(uc, UC_X86_ REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_ REG EDX, &r_edx);
uc_reg_write(uc, UC_X86_ REG_XMMO, &r_xmmO) ;
uc_reg_write(uc, UC_X86_ REG_XMM1, &r_xmml);

// tracing all basic blocks with customized callback
uc_hook_add(uc, &tracel, UC_HOOK_ BLOCK, hook block, NULL, 1, 0);

// tracing all instruction by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook _code, NULL, 1, 0);

// emulate machine code in infinite time
err = uc_emu_start (uc, ADDRESS, ADDRESS + sizeof (X86_CODE32) - 1, 0, 0);

23

https://www.unicorn-engine.org/

ldea: QEMU as a library

e Exposing full features of QEMU as a library is impractical
o Device emulation, userspace emulation, etc.
o Too many interfaces
o Too unstable interfaces

e A parch simulator only requires to model a processor

Specifying processor

Mapping memory with RWX

Reading/writing registers; a requirement shared with gdbstub/TCG plugins
Executing instructions

Trapping; allows implementing application-specific behaviors

e Potentially useful for compiler research, reverse engineering, etc.

o O O O O

24

Conclusion

e parch matters
o Cope with Amdahl’s law by exploiting transistors we get with Moore’s law

e Trace-based simulation significantly aids parch research
e QEMU/TCG is ideal for trace-based simulation

o Fast

o Rich features
e parch speculation remains as an open problem

e Time to rethink QEMU as a library?
o Hide internal details and only provide features commonly needed
o Reuse gdbstub/TCG plugin code/interface
o Not only useful for parch simulation but also for software research and reverse engineering

25

Acknowledgement

Daynix Computing Ltd supported:

The development of register read feature of TCG
Linux userspace emulation fixes

The basic block generator development

The travel to KVM Forum

o And this presentation

The presented parch research was supported by JSPS KAKENHI Grant
Number JP-20H04153.

o O O O

26

